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Introduction
Fuzzy quantification is a formal technique that is concerned with quantifica-
tion over vague concepts and resulting in truth values over [0, 1]. Since natural
language is pervaded by vagueness and heavily depends on quantificational phe-
nomena fuzzy quantification represents an extremely important aspect in the
development of a model of natural language and has been successfully applied
to diverse applications such as database querying, data mining and data sum-
marization [5].

According to Glöckner [7] we can distinguish between three main issues in
the field of fuzzy quantification, namely, interpretation, summarization and rea-
soning. The most fundamental of these issues is that of the interpretation of
fuzzy quantifiers, which corresponds to the problem of defining the meaning of
fuzzy quantifiers i.e. the modeling of vague quantifiers. The problem of rea-
soning corresponds to the task of inferring new knowledge from possibly fuzzy
information by means of fuzzy quantifiers. The issue of summarization describes
the problem of aggregating vague data by means of fuzzy quantifiers in order to
create meaningful summaries.

The purpose of this paper is to give the reader an introduction to the issue
of interpretation of fuzzy quantifiers, which is still not entirely mastered yet
and of great importance to the applicability of fuzzy quantification. The paper
is organized in several sections. The first section provides the reader with the
necessary formal and linguistic background required to be able to understand
the issue of finding adequate models to the quantification phenomena occurring
in natural language. It discusses the vagueness encountered in natural language,
the formal concepts of fuzzy sets, fuzzy logics, and the notion of quantification.
The latter sections give an overview over the various approaches proposed for
the modeling of natural language quantifiers and discusses these methods as
well as their linguistic adequacy. The last section then gives some directions for
a deeper study of the field and for further research topics.

1 Background
1.1 Uncertainty of natural language
In order to understand the problem of linguistic adequate modeling of linguistic
quantifiers we must understand the vagueness found in natural languages. The
uncertainty in natural language arises from the need to express succinctly com-
plex, probably incomplete and ambiguous informations. According to Glöckner
[7] the imprecisions of natural language can take the following forms: vagueness,
underspecificity, ambiguity and context dependence. Even though we will mostly
be interested in the issue of handling vagueness we will need to discuss each of
these aspects in order to be able to distinguish them properly.

∙ Vagueness is widely agreed to describe concepts that have borderline cases,
that cannot be perfectly classified. For example the concepts of baldness,
obesity, beauty, or being tall are vague in this sense. Alternatively, con-
cepts are sometimes considered to be vague if they are subject to the
Sorites paradox [15]. The Sorites paradox is an argument that uses math-
ematical induction to derive an absurd claim from the assumption that
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a concept is characterized by a discrete measure. For example, a man
can clearly be considered bald if he has no hair. Now, if a bald man has
𝑛 hairs then he will still be bald if he has one more hair. The iteration
of this argument yields that a man with, say, hundred thousand hairs, is
bald. This is clearly not the case, which shows that vague concepts are not
specifiable in terms of a discrete measure. Furthermore, we can observe
that vague concepts are indeed mostly independent from the precision of
any measure. Take for example a person that is fifty years old, this person
is not clearly not old but also the person is not clearly old. The decision
will not become easier if we learn that the person is in effect only forty-
nine years, eleven month and twenty days old. This shows that vagueness
cannot be resolved by more precise measures. For a more detailed and
philosophically motivated discussion about vagueness see [15].

∙ Underspecificity corresponds to a lack of relevant informations, that is
usual in communications of incomplete knowledge e.g. “I heard some-
thing!” or if information is intentionally retained “Someone told me about
the secret.”.

∙ Ambiguity refers to multiple distinct meanings of the same word or phrase.
For example consider the word “scale” which may among others denote
a set of musical notes as well as the rigid plates constituting the skin of
reptiles.

∙ Context dependence refers to the variation of the meaning of a concept
based on the context. For example a fifteen-year-old person can clearly
be considered as young, however, a computer of the same age is evidently
old. The basic concept of being old is the same but the meaning varies
depending on whether the context is a biological or a technological.

Vagueness is usually modeled by means of many-valued logics such as three-,
five- and infinitely-valued logics. In particular fuzzy logic (see section 1.3) fits
quite closely to the concept of vagueness, however, it is still questionable if this
formalism is really adequate. Indeed, it does not truly capture the notion of
borderline cases. The infinitely precise, continuous truth values of fuzzy logic
correspond to clear specifications of degrees of belongingness to vague concepts,
which is in contrast with the idea of borderline cases that cannot be completely
classified.

1.2 Fuzzy Sets
Fuzzy sets are a generalization of classical sets introduced by Zadeh in [21] as
a formalism to model the vagueness encountered in the real world. A fuzzy set
represents a set, whose elements have a degree of membership in the interval
[0, 1] = I. A degree of membership of 0 indicates that an element does not
belong to the set, whereas a degree of membership of 1 means that the element
fully belongs to the set.

Definition 1 (Fuzzy sets). Let 𝐸 be a crisp set, then a fuzzy set 𝐴𝐸 over
the universe E is characterized by its membership function 𝜇𝐴𝐸

: 𝐸 → I. The
support of a fuzzy set 𝑋𝐸 is given by support(𝑋𝐸) = {𝑒 ∈ 𝐸 : 𝜇𝑋𝐸

(𝑒) > 0}.
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For simplicity we shall discard the subscript of a fuzzy set whenever the
choice of the universe is obvious from the context. We will denote concrete
fuzzy sets in a similar manner than we do for sets e.g.:

𝑋 = { 0.33/𝑒1, 0.1/𝑒2, 0.92/𝑒3 },

where the numbers 0.33, 0.1, 0.92 are the degrees of membership of the elements
𝑒1, 𝑒2 and 𝑒3, respectively. To indicate that a fuzzy set models a given concept
expressed in natural language we write the name of the fuzzy set in bold letters.
For example we write blond, tall, bald to denote the fuzzy sets modeling the
concepts of being blond, tall or bald – respectively.

By the previous definition it is easy to see that crisp sets constitute a special
case of fuzzy sets, where the range of the characteristic function1 is restricted
to {0, 1} = 2. The relation ⊆ can be generalized to operate on fuzzy sets. Such
a generalization is given by Zadeh in [21] and is defined as follows.

Definition 2 (Fuzzy subset relation). Let 𝐴, 𝐵 be fuzzy sets over a universe
𝐸, then 𝐴 ⊆ 𝐵 :⇐⇒ 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) for all 𝑥 ∈ 𝐸.

Even though this generalization of ⊆ is not the only possibility, it is seen in
the literature as the only adequate choice. In the following we will denote by
𝒫(𝐸) the power set of some crisp set E. Then using the previous definition we
can define the fuzzy power set mapping.

Definition 3 (Fuzzy power set). Let 𝐸 be a crisp set, then the fuzzy power set
of E is defined as ̃︀𝒫(𝐸) = {𝐵 : 𝐵 ⊆ 𝐸}.

The classical set operations can also be extended to work on fuzzy sets, but
unlike the subset relation these operations have many plausible generalizations.
The next definition specifies formally the concepts of fuzzy intersection, union
and complementation.

Definition 4 (Fuzzy set operations). Let 𝐸 be a crisp set. Then mappings̃︀∩, ̃︀∪ : ̃︀𝒫(𝐸)2 → ̃︀𝒫(𝐸) and ̃︀¬ : ̃︀𝒫(𝐸) → ̃︀𝒫(𝐸) that satisfy

̃︀∩|𝒫(𝐸)2 = ∩ , ̃︀∪|𝒫(𝐸)2 = ∪ , ̃︀¬|𝒫(𝐸) = ¬

are respectively called fuzzy intersection, fuzzy union and fuzzy complement2.

The standard fuzzy set operations, denoted by ∩, ∪ and ¬, were originally
introduced by Zadeh in [21].

Definition 5 (Standard fuzzy set operations). Let A, B be fuzzy sets over a
universe E, then ∩, ∪ and ¬ are respectively characterized by

𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}
𝜇𝐴∩𝐵(𝑥) = min{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}
𝜇¬𝐴(𝑥) = 1 − 𝜇𝐴(𝑥), for all 𝑥 ∈ 𝐸.

1We denote the characteristic function of a crisp set by 𝜒.
2The notation 𝑓 |𝐶 denotes the restriction of the domain of the function 𝑓 : 𝐴 → 𝐵 to

𝐶 ⊆ 𝐴.

4



It is easy to see that ∩, ∪, and ¬ satisfy the conditions formulated in defini-
tion 4 and are, therefore, generalizations of the classical set operations.

Occasionally we will need to systematically extend functions operating on
given base sets to operate on fuzzy sets over the base set. This leads to the defi-
nition of so-called extension principles which roughly correspond to fuzzification
mechanisms for functions.

Definition 6 (Extension principle). An extension principle ℰ assigns to each
𝑓 : 𝐸 → 𝐸′ a mapping ℰ(𝑓) : ̃︀𝒫(𝐸) → ̃︀𝒫(𝐸′), where 𝐸, 𝐸′ ̸= ∅.

We also introduce the related notion of powerset mapping which describes
the extension of a function to the powerset of its domain. The explicit distinc-
tion between functions and their powerset mapping will later allow us to avoid
ambiguities.

Definition 7 (Powerset mapping). Let 𝑓 : 𝐸 → 𝐸′ then we define the powerset
mapping 𝑓 : 𝒫(𝐸) → 𝒫(𝐸′) by 𝑓(𝑋) = {𝑓(𝑒) : 𝑒 ∈ 𝑋} for all 𝑋 ∈ 𝒫(𝐸).

Given a fuzzy set, we are sometimes interested in the set of elements that
satisfy at least a certain degree of membership – this corresponds to the notion
of 𝛼-cut.

Definition 8 (𝛼-cut). Let 𝐴 ∈ ̃︀𝒫(𝐸) and let 𝛼 ∈ I, then the 𝛼-cut of A is
the crisp set 𝐴≥𝛼 = {𝑥 ∈ 𝐸 : 𝜇𝐴(𝑥) ≥ 𝛼}. The strict 𝛼-cut of A is given by
𝐴> = {𝑥 ∈ 𝐸 : 𝜇𝐴(𝑥) > 𝛼}.

Later we will need to retrieve in descending order the degrees of membership
occurring in a given fuzzy set. For this purpose we introduce an additional
notation.

Definition 9. Let 𝐸 ̸= ∅ be a finite set with |𝐸| = 𝑚 and 𝑋 ∈ ̃︀𝒫(𝐸). Further-
more let 𝐸 = {𝑒1, . . . , 𝑒𝑚} such that 𝜇𝑋(𝑒1) ≥ . . . 𝜇𝑋(𝑒𝑚). Then we define

𝜇[𝑗](𝑋) =

⎧⎪⎨⎪⎩
1 if 𝑗 = 0
0 if 𝑗 > 𝑚

𝜇𝑋(𝑒𝑗) otherwise.

1.3 Fuzzy Logic
Fuzzy logic represents a family of logics whose development was motivated by
the introduction of fuzzy sets. Fuzzy logic extends classical bi-valued logics by
allowing continuous truth values in the interval I, where 0 represents falsity and
1 represents absolute truth. The connectives ̃︀¬, ̃︀∨, ̃︀∧ and the quantifiers ̃︀∃, ̃︀∀
of fuzzy logic, unlike their classical counterparts, do not have a fixed meaning.
The only condition they have to satisfy is to correctly generalize the classical
analogues, i.e. ̃︀¬|2 = ¬, ̃︀∨|2 = ∨ and ̃︀∧|2 = ∧.

Definition 10 (Standard fuzzy connectives). We denote by ¬ : I → I, ∨ : I2 →
I and ∧ : I2 → I the standard fuzzy connectives given by

¬𝑥 = 1 − 𝑥

𝑥 ∨ 𝑦 = max{𝑥, 𝑦}
𝑥 ∧ 𝑦 = min{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ I.
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The most commonly used family of fuzzy logics are t-norm fuzzy logics [9],
which use t-norms as the meaning of the ̃︀∧ connective and t-conorms as the
meaning of ̃︀∨.

Definition 11 (t-norm and t-conorm). A t-norm is a function ⊤ : I2 → I that
satisfies the following properties.

⊤(𝑎, 𝑏) = ⊤(𝑏, 𝑎) (Commutativity)
⊤(𝑎, 𝑏) ≤ ⊤(𝑐, 𝑑) if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 (Monotonicity)
⊤(𝑎, ⊤(𝑏, 𝑐)) = ⊤(⊤(𝑎, 𝑏), 𝑐) (Associativity)
⊤(𝑎, 1) = 1 (Neutral Element 1).

The corresponding t-conorm ⊥ is defined as ⊥(𝑎, 𝑏) = 1 − ⊤(1 − 𝑎, 1 − 𝑏).

In fuzzy predicate logic predicates are usually interpreted as fuzzy sets. Then
in case of continuous t-norm fuzzy logics, the sentences ̃︀∀𝑥𝜙(𝑥) and ̃︀∃𝑥𝜙(𝑥) are
respectively interpreted as the infimum and the supremum of the truth values
of 𝜙(𝑥).

1.4 Quantification
1.4.1 The concept of quantification

From an abstract point of view the concept of quantification allows us to express
properties of a collection of individuals. It corresponds thus to a second order
concept. In natural language quantification is ubiquitous. By means of names,
articles, temporal adverbs, spacial adverbs it can refer – more or less explicitly –
to quantities, individuals, points in time, points in space, situations, etc. Some
examples of quantification are:

∙ “John is here.”, “The man brought flowers.”

∙ “Most people like each other.”, “Much wine was drunk.”

∙ “The champion always won.”

∙ “The key is somewhere.”

Besides being ubiquitous in natural language, quantification also has a great
impact on the meaning of sentences e.g. quantification makes the difference
between “having no money” and “having a lot of money” [7].

Quantification is known to logic since its early beginnings in the antiquity.
However the formal logic restricted its attention mostly to the formal counter-
parts ∀ and ∃ of the quantifiers “everything” and “something” that are com-
monly interpreted as unary quantifiers over a base set. It was only in 1957 that
the logician Mostowski proved that some quantifiers are not expressible in terms
of ∀ and ∃ [12]. This led to the creation of the theory of generalized quantifiers.

1.4.2 Generalized Quantifiers

The concept of generalized quantifiers arose from the discovery of many math-
ematical and linguistic quantifiers, which are not expressible in predicate logic
restricted to ∀ and ∃. Generalized quantifiers are defined to be mappings from
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subsets or relations over a base set 𝐸 to a binary truth value. The generalized
quantifiers were analyzed by Barwise and Cooper for their relationship to nat-
ural languages who found that they were able to express numerous linguistic
quantifiers. Moreover, Barwise and Cooper embedded these quantifiers in a log-
ical language that reflects the syntax of natural language much better than the
traditional predicate logic does [1].

1.4.3 Fuzzy Quantifiers

The ability of generalized quantifiers to handle natural language concepts as well
as the introduction of fuzzy sets by Zadeh and the subsequent development of
fuzzy logic motivated the extension of generalized quantifiers to fuzzy quantifiers
in order to handle inherently vague quantifiers of natural language like “few”,
“many”, “approximately half of”, “much more than”, etc. We can think of fuzzy
quantifiers as mappings from fuzzy subsets of a base set to a fuzzy truth value.

1.4.4 Terminology

In the following we will define some of the terminology related to quantifiers in
order to avoid ambiguities between the mathematical concepts and the linguistic
concepts. First we need to formally define the notion of quantifier, which we
restrict to the case of monadic3 crisp quantifiers.

Definition 12 (Quantifiers). A (crisp) quantifier on a base set 𝐸 ̸= ∅ is a
mapping 𝑄 : 𝒫(𝐸)𝑛 → 2

Because of this restriction our notion of quantifier will not capture entirely
the above, informally stated notion of generalized quantifiers, this is however ac-
ceptable since we will mostly be concerned by monadic quantification. Similarly,
we define the notion of semi-fuzzy quantifiers and fuzzy quantifiers.

Definition 13 (Semi-fuzzy quantifiers). A semi-fuzzy quantifier on a base set
𝐸 ̸= ∅ is a mapping 𝑄 : 𝒫(𝐸)𝑛 → I.

Definition 14 (Fuzzy quantifiers). A fuzzy quantifier on a base set 𝐸 ̸= ∅ is a
mapping ̃︀𝑄 : ̃︀𝒫(𝐸)𝑛 → I.

In a mathematical context we will sometimes have to refer to quantifiers of
natural language. To this end we use the notion of linguistic quantifiers, which
refers to quantifier symbols of natural language and their intuitive meaning. Just
as in the case of fuzzy sets we use bold letters to denote quantifiers modeling
a linguistic quantifier. For instance we denote by most, exactly one, only the
quantifiers respectively modeling the linguistic quantifiers “most”, “exactly one”
and “only”.

1.5 Classes of Quantifiers
Because of the wealth of quantifiers occurring in natural language and in math-
ematics it was necessary to establish classifications that group quantifiers by
their structural and semantic characteristics. In the following we will consider

3We say that a quantifier is monadic if all of its arguments are monadic (see section 1.5).
The adjective “unary” is used to express that a quantifier has only one argument.
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two important classifications: one for linguistic quantifiers and one for logical
quantifiers.

1.5.1 Absolute and Relative Quantifiers

The classes of absolute and relative quantifiers are subclasses of unary and bi-
nary quantitative linguistic quantifiers. Absolute quantifiers represent absolute
quantities and intervals, whereas relative quantifiers express proportions and
percentages. Some examples of absolute quantifiers are “exactly one”, “approx-
imately five”, “exists”. The quantifiers “at least half”, “around one third” are
examples of relative quantifiers.

These classes will be particularly relevant in the first part of the overview
where we will see the methods based on fuzzy linguistic quantifiers, which mainly
concentrate on the modeling of absolute and relative quantifiers.

Even though these two classes of linguistic quantifiers are of great practical
interest, many other classes of practically relevant linguistic quantifiers such as
quantifiers of exception, cardinal comparatives, proportional comparatives etc.
exist [5, 7].

1.5.2 Monadic and Polyadic Quantifiers

The notions of monadic and polyadic quantifiers are of importance for the un-
derstanding of the scope of the methods considered in the sections 2, 3 and 4.
Indeed, they allow us to draw a line between the usual concept of quantifiers in
the context of fuzzy quantification and the concept of generalized quantifiers.
Let us begin by introducing the closely related concept of types, which will allow
us to define quantifiers of arbitrary types.

Definition 15 (Types). A type is a tuple of the form ⟨𝑡1, . . . , 𝑡𝑛⟩ where 𝑛 ∈ N+

and 𝑡𝑖 ∈ N+ for 𝑖 = 1, . . . , 𝑛.

A quantifier of type ⟨𝑡1, . . . , 𝑡𝑛⟩ is a mapping of the form 𝑄 : 𝒫(𝐸𝑡1) ×
· · · × 𝒫(𝐸𝑡𝑛) → 2 – analogously we define semi-fuzzy and fuzzy quantifiers of
type ⟨𝑡1, . . . , 𝑡𝑛⟩. Quantifiers of type ⟨1, . . . , 1⟩ are said to be monadic, while
quantifiers of any other type are said to be polyadic4. Thus, our notion of
quantifiers (see definitions 12, 13, 14) covers the monadic case only. This is
because almost all approaches to fuzzy quantification can only generate monadic
models and are thus not suited to model more complex but relevant constructs
such as branching quantification (see section 4).

1.6 Structure of the approaches to fuzzy quantification
In the following we will briefly discuss the general structure of approaches to
fuzzy quantification. Indeed all current approaches follow a two-step scheme
which consists in the specification of fuzzy quantifiers using some suitable medium
and the systematic translation of the specification to a fuzzy quantifier. The
specification step is of course application dependent and has, therefore, to be
carried out manually. It is thus the translation step step which constitutes the
core of any approach to fuzzy quantification. While inspecting the individual

4This terminology in analogy to the terminology used by Westerståhl for generalized quan-
tifiers in [16]
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approaches we will, hence, focus on the description and the analysis of the trans-
lation procedures. Formally, we can represent such a translation procedure as a
mapping

F : S → Q,

where S represents the space of specifications and Q is the space of fuzzy quan-
tifiers. Depending on the nature of the specification medium we can distinguish
between two main categories of methods, namely the family of approaches based
on fuzzy linguistic quantifiers (see section 2) and the family of approaches using
semi-fuzzy quantifiers (see section 3).

1.7 Adequacy
Since we are modeling linguistic quantifiers we need some criteria to determine
whether our models are adequate or not i.e. we need to check whether a fuzzy
quantifier that models some linguistic quantifier reflects its intuitive meaning
and its properties. This is commonly referred to as linguistic adequacy. This no-
tion is rather informal and general, which means that we cannot verify whether
some models are truly adequate. Instead we can formulate adequacy constraints
which, if they hold, give us evidence about the linguistic adequacy. Addition-
ally, we can specify concrete examples in which a model exhibits implausible
behavior.

There are mainly two ways to specify adequacy criteria for fuzzy models of
linguistic quantifiers. The first method is to specify explicitly which proper-
ties are to be satisfied by a model of a given linguistic quantifier. The second
way to specify adequacy constraints is to require the preservation of a given
property during the translation process from the specification medium to the
resulting fuzzy quantifier. This has the advantage of being much more system-
atic and allows us to obtain more general results about the adequacy of the
considered method. The adequacy requirements for the methods of the fuzzy
linguistic quantifier family are usually specified in the former way because the
incompatible structure of fuzzy linguistic quantifiers and fuzzy quantifiers makes
the specification of the preservation of properties rather difficult. The methods
based on semi-fuzzy quantifiers – especially Glöckner’s method – specify ade-
quacy requirements in the latter way.

In the following we will distinguish between semantic properties and quan-
tifier constructions, which are two important instruments for the specification
of linguistic adequacy.

1.7.1 Semantic properties

Semantic properties describe the behavior of quantifiers. The properties de-
scribed in the following are inspired by properties found in natural language
quantifiers. Usually, we require that adequate models exhibit semantical prop-
erties that reflect the intuitive behavior as closely as possible.

The first property we will consider is that of monotonicity in an argument,
which specifies that the truth value of a quantified sentence increases/decreases
if an argument becomes more/less general. To clarify this consider the sentence
“Some men are tall”, which must be at least as true as some “Some blond men

9



are tall” because “some” has a monotonic increasing behavior in its restriction5

and the concept of men is more general than that of blond men.

Definition 16 (Monotonicity in the 𝑖-th argument). A fuzzy quantifier ̃︀𝑄 :̃︀𝒫(𝐸)𝑛 → I is said to be increasing in its 𝑖-th argument 𝑖 ∈ {1, . . . , 𝑛}, if

̃︀𝑄(𝑋1, . . . , 𝑋𝑛) ≤ ̃︀𝑄(𝑋1, . . . , 𝑋𝑖−1, 𝑋 ′
𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛),

whenever 𝑋1, . . . , 𝑋𝑛, 𝑋 ′
𝑖 ∈ ̃︀𝒫(𝐸) satisfy 𝑋𝑖 ⊆ 𝑋 ′

𝑖. Q is said to be decreasing in
its 𝑖-th argument, if under the same conditions it always holds that̃︀𝑄(𝑋1, . . . , 𝑋𝑛) ≥ ̃︀𝑄(𝑋1, . . . , 𝑋𝑖−1, 𝑋 ′

𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛).

The corresponding definitions for semi-fuzzy quantifiers are analogous with the
arguments ranging over 𝒫(𝐸) and ⊆ |𝒫(𝐸)2 .

A few more examples of monotonic linguistic quantifiers are: “all”, “no”,
“some”, “many”, “at least three”.

Another important property is that of “having extension”, which is given if
a quantifier is insensitive to the addition of irrelevant elements to the base set.
For example the sentence “Some men are tall” should have the same value on
the base set consisting of all men as well as on any other base set containing all
men.

Definition 17 (Having extension). Let 𝐸 ⊆ 𝐸′ be base sets and let 𝑄𝐸 :
𝒫(𝐸)𝑛 → I and 𝑄𝐸′ : 𝒫(𝐸′)𝑛 → I be the interpretation of 𝑄 over 𝐸 and 𝐸′,
respectively. Then 𝑄 is said to have extension if

𝑄𝐸(𝑋1, . . . , 𝑋𝑛) = 𝑄𝐸′(𝑋1, . . . , 𝑋𝑛), for all 𝑋1, . . . , 𝑋𝑛 ∈ 𝒫(𝐸).

In an analogous way we define the notion of having extension for fuzzy quanti-
fiers.

The property of conservativity expresses another form of context insensitivity
that is pervasive in natural language quantifiers. A (semi-) fuzzy quantifier is
conservative if the quantification is unaffected by elements in the scope that do
not belong to the restriction.

Definition 18 (Conservativity). A semi-fuzzy quantifier 𝑄 : 𝒫(𝐸)2 → I is
conservative if

𝑄(𝑋1, 𝑋2) = 𝑄(𝑋1, 𝑋1 ∩ 𝑋2),

for all 𝑋1, 𝑋2 ∈ 𝒫(𝐸).

For fuzzy quantifiers we can distinguish between two degrees of conservativ-
ity, namely, weak and strong conservativity.

Definition 19 (Weak and strong conservativity). A fuzzy quantifier ̃︀𝑄 : ̃︀𝒫(𝐸)2 →
I is weakly conservative if̃︀𝑄(𝑋1, 𝑋2) = ̃︀𝑄(𝑋1, support(𝑋1) ∩ 𝑋2), for all 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸).

5In the case of two-place quantification of the form “𝑄 of 𝑋1 are 𝑋2”, the first argument,
𝑋1, is called the quantifiers restriction, since it restricts the quantification to the individuals
in 𝑋1. The second argument, 𝑋2, which expresses some property of the individuals is called
the scope.
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Furthermore, given a fuzzy intersection ̃︀∩, ̃︀𝑄 is said to be strongly conservative
if ̃︀𝑄(𝑋1, 𝑋2) = ̃︀𝑄(𝑋1, 𝑋1̃︀∩𝑋2), for all 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸).

The preservation of conservativity in the strong sense from semi-fuzzy quan-
tifiers turns out to be incompatible with the preservation of other useful prop-
erties. This is the reason for the introduction of weak conservativity, which
still expresses the aspect of context insensitivity while not excluding the other
properties [7].

To illustrate concept of conservativity consider the sentence “Most of 𝑋 are
𝑌 ”. This sentence can be equivalently reformulated as “Most of 𝑋 are 𝑋 and 𝑌 ”.
Hence, the quantifier “most” is intuitively conservative. A few other examples
of conservative quantifiers are “all”, “exists”, “few”, “many”. An example of a
non-conservative quantifier is the quantifier “only”. For instance consider the
sentence “Only blond people are tall”, which is not equivalent to the tautological
sentence “Only blond people are blond and tall people”.

The last semantic property that we will mention here is that of automor-
phism invariance, which formalizes the concept of quantitative quantifiers. A
quantifier is said to be quantitative if it expresses a quantity and is, thus, insensi-
tive to specific individuals of the base set. A few examples of quantitative quan-
tifiers are “all”, “exists”, “many”. Non-quantitative quantifiers are also called
qualitative. In natural language proper names are examples of non-quantitative
quantifiers.

Definition 20 (Quantitativity). A semi-fuzzy quantifier 𝑄 : 𝒫(𝐸)𝑛 → I is
quantitative if for all automorphisms 𝜉 : 𝐸 → 𝐸 and all 𝑋1, . . . , 𝑋𝑛 ∈ 𝒫(𝐸)

𝑄(𝑋1, . . . , 𝑋𝑛) = 𝑄(̂︀𝜉(𝑋1), . . . , ̂︀𝜉(𝑋𝑛)).

A fuzzy quantifier ̃︀𝑄 : ̃︀𝒫(𝐸)𝑛 → I is quantitative w.r.t. to an extension principle
ℰ if for all automorphisms 𝜉 : 𝐸 → 𝐸 and all 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸)

̃︀𝑄(𝑋1, . . . , 𝑋𝑛) = ̃︀𝑄(ℰ(𝜉)(𝑋1), . . . , ℰ(𝜉)(𝑋𝑛)).

Of course the list of properties discussed above is far from being complete,
there exist many others like e.g. convexity, propagation of fuzziness, cylindrical
extension, etc. More extensive collections of properties can be found in [5, 7]

1.7.2 Quantifier constructions

Quantifier constructions, as the name suggests, allow us to construct new quan-
tifiers from existing ones, thereby, implicitly relating the quantifiers. In the
following we will consider some quantifier constructions that model very similar
constructions found in natural language.

Antonyms and duals are two important notions relating natural language
quantifiers. The notion of antonym describes quantifiers that have an opposite
meaning such as “all” and “no”, “at least half” and “at most half”. We model
antonyms by the complementation of the last argument.

Definition 21 (Antonyms). The antonym 𝑄¬ : 𝒫(𝐸)𝑛 → I of a semi-fuzzy
quantifier 𝑄 : 𝒫(𝐸)𝑛 → I with 𝑛 > 0 is defined by

𝑄¬(𝑋1, . . . , 𝑋𝑛) = 𝑄(𝑋1, . . . , ¬𝑋𝑛)
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for all 𝑋1, . . . , 𝑋𝑛 ∈ 𝒫(𝐸). The antonym ̃︀𝑄̃︀¬ : ̃︀𝒫(𝐸)𝑛 → I of a fuzzy quantifier̃︀𝑄 : ̃︀𝒫(𝐸)𝑛 → I is defined analogously, based on the fuzzy complement ̃︀¬.

The notion of dual corresponds to the negation of the antonym. Some ex-
amples of linguistic quantifiers and their duals are: “all” and “some”, “many”
and “few”, “at most 70%” and “less than 30%”.

Definition 22 (Duals). Given a fuzzy negation ̃︀¬, the dual ̃︀¬𝑄¬ : 𝒫(𝐸)𝑛 → I
of a semi-fuzzy quantifier Q is defined by

̃︀¬𝑄¬(𝑋1, . . . , 𝑋𝑛) = ̃︀¬(𝑄¬(𝑋1, . . . , 𝑋𝑛))

for all 𝑋1, . . . , 𝑋𝑛 ∈ 𝒫(𝐸). In a completely analog way we define the dual̃︀¬ ̃︀𝑄̃︀¬ : ̃︀𝒫(𝐸) → I of a fuzzy quantifier ̃︀𝑄.

If the fuzzy negation is fixed by the context we denote the dual of a semi-
fuzzy quantifier 𝑄 by 𝑄̃︀� — and analogously for fuzzy quantifiers.

Another construction that comes to mind is that of unions and intersec-
tions of arguments to model sentences that have a combination in some of their
arguments e.g. “Most athletes are young and tall”.

Definition 23 (Unions and intersections of arguments). Let 𝐸 ̸= ∅ and 𝑄 :
𝒫(𝐸)𝑛 → I be a semi-fuzzy quantifier with 𝑛 > 0. Then, the semi-fuzzy quanti-
fier 𝑄∪ : 𝒫(𝐸)𝑛 → I is given by

𝑄∪(𝑋1, . . . , 𝑋𝑛, 𝑋𝑛+1) = 𝑄(𝑋1, . . . , 𝑋𝑛 ∪ 𝑋𝑛+1)

for all 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛+1 ∈ 𝒫(𝐸). Analogously we define the fuzzy quantifier̃︀𝑄̃︀∪ based on the fuzzy union ̃︀∪. Similarly we define the semi-fuzzy quantifier
and the fuzzy quantifier 𝑄∩ and ̃︀𝑄̃︀∩.

Consider again the example above. If the linguistic quantifier most is mod-
eled by most : 𝒫(𝐸)2 → I, then the sentence above could be modeled by
most ∩ (athlete, young, tall). So far, boolean operations on arguments are
restricted to the last argument of a quantifier. In natural language, however,
such constructions on arguments may occur in any argument of a quantified
statement. To handle these cases we introduce the notion of argument permu-
tation.

Definition 24 (Argument permutation). Let 𝐸 ̸= ∅, 𝑄 : 𝒫(𝐸)𝑛 → I be a
semi-fuzzy quantifier and 𝛽 : {1, . . . , 𝑛} → {1, . . . , 𝑛} be a permutation. Then,
the semi-fuzzy quantifier 𝑄𝛽 : 𝒫(𝐸)𝑛 → I is given by

𝑄𝛽(𝑋1, . . . , 𝑋𝑛) = 𝑄(𝑋𝛽(1), . . . , 𝑋𝛽(𝑛))

for all 𝑋1, . . . , 𝑋𝑛 ∈ 𝒫(𝐸). Given a fuzzy quantifier ̃︀𝑄 : ̃︀𝒫(𝐸)𝑛 → I we definẽ︀𝑄𝛽 analogously.

This construction also occurs naturally in the quantifiers “only” and “all”. In-
deed the sentences “Only 𝑋1 are 𝑋2” and “All 𝑋2 are 𝑋1” are equivalent. Hence,
we can model the linguistic quantifier “only” by only(𝑋1, 𝑋2) = all𝛽(𝑋1, 𝑋2),
where 𝛽 = {1 ↦→ 2, 2 ↦→ 1}.

Again, this list of quantifier constructions is non-exhaustive. Many other
interesting constructions such as quantifier conjunctions, multiple occurrences
of variables etc. can be defined [7].
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2 Methods based on fuzzy linguistic quantifiers
This section covers some, but not all of the methods based on fuzzy linguistic
quantifiers. A more complete collection of methods can be found in [5]. The
approaches based on fuzzy linguistic quantifiers are, compared to the ones based
on semi-fuzzy quantifiers, rather simple and are mostly limited to the cases of
one- and two-place quantification over finite base sets. On the other hand they
are still practically relevant because of their easier implementation and their
lower computational complexity.

Before we begin with the examination of the individual approaches we need
to formally define the notion of fuzzy linguistic quantifiers and some related
concepts. A fuzzy linguistic quantifier associates truth values to scalar cardi-
nalities i.e. they can also be considered as fuzzy subsets of the reals, for this
reason we will also use the symbol 𝜇 to denote fuzzy linguistic quantifiers.

Definition 25 (Fuzzy linguistic quantifier). Let 𝑄 be a linguistic quantifier,
then a mapping 𝜇𝑄 : R+ → I or 𝜇𝑄 : I → I modeling the meaning of 𝑄 is called
a fuzzy linguistic quantifier.

The actual type of a fuzzy linguistic quantifier 𝜇𝑄 depends on whether the
linguistic quantifier 𝑄 is to be modeled as an absolute quantifier, in which case
𝜇𝑄 ∈ IR+ , or as a relative quantifier in which case 𝜇𝑄 ∈ II. Sometimes we need
to generate an absolute fuzzy linguistic quantifier from a relative one.

Definition 26. Let 𝜇𝑄 : I → I and 𝐸 be a finite set, then the mapping 𝜇𝑄,𝐸 :
{0, . . . , |𝐸|} → I is defined as 𝜇𝑄,𝐸(𝑖) = 𝜇𝑄( 𝑖

|𝐸| ) for all 𝑖 ∈ {0, . . . , |𝐸|}.

While considering the different approaches we will sometimes have to dis-
tinguish fuzzy linguistic quantifiers depending on whether they are increasing,
decreasing and whether they are regular. These concepts are formally described
in the next definition.

Definition 27. A fuzzy linguistic quantifier 𝜇𝑄 : 𝒟 → I with 𝒟 ∈ {R+, I} is
increasing (decreasing) if it satisfies 𝜇𝑄(𝑥1) ≤ 𝜇𝑄(𝑥2) (𝜇𝑄(𝑥1) ≥ 𝜇𝑄(𝑥2)) for
all 𝑥1, 𝑥2 ∈ 𝒟 with 𝑥1 ≤ 𝑥2.
Furthermore, if an increasing (decreasing) 𝜇′

𝑄 : I → I satisfies 𝜇′
𝑄(0) = 0 and

𝜇′
𝑄(1) = 1 (𝜇′

𝑄(0) = 1 and 𝜇′
𝑄(1) = 0) then it is called regular increasing or

coherent (regular decreasing). We call an increasing (decreasing) 𝜇′
𝑄 : R+ → I

regular increasing (regular decreasing) if it satisfies 𝜇′
𝑄(0) = 0 and 𝜇′

𝑄(|𝐸|) = 1
(𝜇′

𝑄(0) = 1 and 𝜇′
𝑄(|𝐸|) = 1 where 𝐸 is a finite base set.

We can now describe the general form of an evaluation method based on
fuzzy linguistic quantifiers. These approaches construct fuzzy quantifiers from
fuzzy linguistic quantifiers given as the specification, thus, we can consider these
models as functionals that map fuzzy linguistic quantifiers to fuzzy quantifiers.
As it was already mentioned earlier the approaches are able to handle the cases
of absolute and relative one- and two-place quantification only. This means
each method can be seen as a collection of at most four functionals covering the
respective cases of quantification. This is more formally expressed in the next
definition.

Definition 28 (Models based on fuzzy linguistic quantifiers). An evaluation
method 𝒵 based on fuzzy linguistic quantifiers consists of at least one of the
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following four functionals

𝒵(1)
abs : (R+ → I) → ( ̃︀𝒫(𝐸) → I),

𝒵(2)
abs : (R+ → I) → ( ̃︀𝒫(𝐸)2 → I),

𝒵(1)
rel : (I → I) → ( ̃︀𝒫(𝐸) → I),

𝒵(2)
rel : (I → I) → ( ̃︀𝒫(𝐸)2 → I),

which model – as indicated by the sub- and superscripts – the absolute unary,
absolute binary, relative unary and relative binary cases of quantification, re-
spectively.

In the literature [5, 7] we find three more or less explicit requirements that
an evaluation method 𝒵 should satisfy. First it is required that

𝒵(2)
abs(𝜇𝑄)(𝑋1, 𝑋2) = 𝒵(1)

abs(𝜇𝑄)(𝑋1 ̃︀∩ 𝑋2),

i.e. that sentences like “exactly three men are tall” are equivalent to “exactly
three things are men and tall”.

Furthermore, there are two common assumptions that specify the behavior
in the case of unary relative quantification. It is often assumed that

𝒵(1)
rel (𝜇𝑄) = 𝒵(1)

abs(𝜇𝑄,𝐸),

which is only possible on finite base sets where proportions are quantitative.
Finally, it is quite commonly required that an unrestricted relative fuzzy quan-
tifier behaves as the corresponding binary relative quantifier with the base set
as restriction, i.e.

𝒵(1)
rel (𝜇𝑄)(𝑋1) = 𝒵(2)

rel (𝜇𝑄)(𝐸, 𝑋1).

This means a sentence like e.g. “Half of things are expensive” is considered to
be equivalent to “Half of the things, that are things are expensive”.

2.1 Sigma-count approach
The sigma-count approach was first introduced by Zadeh in [20]. This approach
is based on the sigma-count cardinality of fuzzy sets and is meant to model
absolute and relative, one- and two-place quantifiers.

Definition 29 (Sigma-count). Let E be a finite set then Σcount : ̃︀𝒫(𝐸) → R+

is defined as
Σcount(𝐴) =

∑︁
𝑥∈𝐸

𝜇𝐴(𝑥), for all 𝐴 ∈ ̃︀𝒫(𝐸).

The relative sigma-count Σcount : ̃︀𝒫(𝐸)2 → I is defined as

Σcount(𝐵/𝐴) = Σcount(𝐴 ∩ 𝐵)
Σcount(𝐴) , for all 𝐵 ∈ ̃︀𝒫(𝐸) and all 𝐴 ∈ ̃︀𝒫(𝐸) ∖ {}.

The case Σcount(𝐵/{}) has been silently ignored in the literature, therefore
we will not give a complete definition. The fuzzy quantifiers expressed using the
relative sigma-count will, thus, be undefined in the case of the restriction being
the empty set.
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Definition 30 (Sigma-count models). Let 𝐸 be a finite set, then the sigma-
count models are generated by the following four functionals.

SC(1)
abs(𝜇𝑄)(𝑋1) = 𝜇𝑄(Σcount(𝑋1))

SC(2)
abs(𝜇𝑄)(𝑋1, 𝑋2) = 𝜇𝑄(Σcount(𝑋1 ∩ 𝑋2))

for all 𝜇𝑄 : R+ → I and 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸);

SC(1)
rel (𝜇𝑄)(𝑋1) = SC(2)

rel (𝐸, 𝑋1)

SC(2)
rel (𝜇𝑄)(𝑋1, 𝑋2) = 𝜇𝑄(Σcount(𝑋2/𝑋1))

for all 𝜇𝑄 : I → I, 𝑋1 ∈ ̃︀𝒫(𝐸) ∖ {} and 𝑋2 ∈ ̃︀𝒫(𝐸).

The sigma-count approach has several adequacy limitations. The first one
that we will examine here is due to the fact that the sigma-count aggregates
the membership degrees of fuzzy sets in such a way that one large membership
degree becomes indistinguishable from many smaller degrees. This problem is
depicted in the following example.
Example 1 ([7]). We want to model the linguistic quantifier exactly one by
means of the fuzzy linguistic quantifier

𝜇exactly one(𝑥) =
{︃

1 if 𝑥 = 1
0 otherwise.

Consider the set child = {max, susi} and the fuzzy set hungry = {0.5/max,
0.5/susi}. The evaluation of the sentence "exactly one child is hungry" using
the sigma-count models leads to the following result

SC(1)
abs(𝜇exactly one)(child, hungry) = 𝜇exactly one(Σcount(hungry/child))

= 𝜇exactly one(Σcount({0.5/max, 0.5/susi}))
= 1.

The previously obtained result is clearly inadequate and it is easy to see
that this behavior is not due to a wrong choice of the fuzzy linguistic quantifier
𝜇exactly one. Indeed, the only way to produce another output would be to require
𝜇exactly one(1) ̸= 1 but this would again yield an inadequate result in the case
of, say, hungry = {1/max, 0/susi}.

Another problem with the sigma-count approach is its discontinuity in pres-
ence of two-valued fuzzy linguistic quantifiers. In this case it is obvious by
definition 30 that the sigma-count models produce a two valued output. As
shown in the next example, this can result in opposite truth values for inputs
that are very similar.
Example 2 (Sigma-count discontinuity). Consider again the set child and the
fuzzy linguistic quantifier 𝜇exactly one from the previous example. Then we
would expect the evaluation for hungry = {0.99/max, 0/susi} to yield a value
quite close to 1, however the sigma-count model produces the following:

SC(1)
abs(𝜇exactly one)(child, hungry) = 0
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This is of great practical relevance since data very often is a little noisy
and can thus produce very different results. More examples of this inadequate
behavior can be found in [7]. Again this behavior does not depend on the choice
of the fuzzy linguistic quantifier as it can be shown that there is not always an
adequate continuous valued fuzzy linguistic quantifier [7].

2.2 OWA approach
The OWA approach, initially presented by Yager in [18], is unlike the sigma-
count not based on a cardinality count, instead it uses so-called OWA6 operators
to realize the aggregation. The OWA approach is intended to generate models
from regular increasing fuzzy linguistic quantifiers.

Definition 31 (OWA operator). An 𝑛-dimensional OWA operator with 𝑛 ≥ 1,
is a mapping 𝑂w : I𝑛 → I defined by

𝑂w(x) =
𝑛∑︁

𝑖=1
w𝑖x[𝑖] for all x ∈ I𝑛,

where w ∈ I𝑛,
∑︀𝑛

𝑖=1 w𝑖 = 1 and x[𝑗] with 1 ≤ 𝑗 ≤ 𝑛 denotes the 𝑗-th largest
element of x.

According to Yager [18] an OWA operator has a behavior that lies between
the “and” and “or” aggregations. The so-called orness of an OWA operator
is a value in I that describes to which degree the operator behaves as an “or”
aggregation. This measure is required in the formalization of the OWA models
for two-place quantification.

Definition 32 (Orness of an OWA operator). Let 𝑂w be an n-dimensional
OWA operator, then its orness is given by:

orness(w) = 1
𝑛 − 1

𝑛∑︁
𝑗=1

(𝑛 − 𝑗) · w𝑗 .

In particular if 𝐸 is a finite set with |𝐸| > 1 we define for any coherent 𝜇𝑄 :
I → I

orness(𝜇𝑄,𝐸) = 1
𝑛 − 1

𝑛∑︁
𝑗=1

(𝑛 − 𝑗) · (𝜇𝑄,𝐸(𝑗) − 𝜇𝑄,𝐸(𝑗 − 1)).

It is important to notice that the orness is undefined if the base set 𝐸 contains
only a single element. We can furthermore express this measure more succinctly
as stated in the next proposition.

Proposition 1. Let 𝐸 be a finite set with |𝐸| > 1, then for any coherent
𝜇𝑄 : I → I the following holds:

orness(𝜇𝑄,𝐸) = 1
𝑛 − 1

𝑛−1∑︁
𝑗=1

𝜇𝑄,𝐸(𝑗).

6The acronym OWA stands for “ordered weighted averaging”.
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This proposition can be proven quite easily by decomposing the sum in the
expression of the orness. Having defined the measure of orness for coherent
fuzzy linguistic quantifiers, we are ready to introduce the reduction function Δ𝑞

that is required by the OWA method to model two-place quantifiers.

Definition 33. Let E be a finite set, then for 𝑞 ∈ I the function Δ𝑞 : ̃︀𝒫(𝐸)2 →̃︀𝒫(𝐸) is characterized element-wise by

𝜇Δ𝑞(𝑋1,𝑋2)(𝑥) = (𝜇𝑋1(𝑥)∨(1 − 𝑞)) · 𝜇𝑋2(𝑥)𝜇𝑋1 (𝑥)∨𝑞

for all 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸) and 𝑥 ∈ 𝐸.

We now have all the definitions we need to state the OWA models as intro-
duced by Yager in [18].

Definition 34 (OWA models). The OWA models are given by the following
functionals

∙ Let 𝐸 ̸= ∅ be a finite set with |𝐸| = 𝑛, then

OWA(1)
rel (𝜇𝑄)(𝑋1) = 𝑂w(x)

for all coherent 𝜇𝑄 : I → I and 𝑋1 ∈ ̃︀𝒫(𝐸), where 𝑂w is an 𝑛-dimensional
OWA operator with w𝑖 = 𝜇𝑄,𝐸(𝑖) − 𝜇𝑄,𝐸(𝑖 − 1) and x𝑖 = 𝜇[𝑖](𝑋1) for
𝑖 = {1, . . . , 𝑛},

∙ Let 𝐸 ̸= ∅ be a finite set with |𝐸| = 𝑛 > 1, then

OWA(2)
rel (𝜇𝑄)(𝑋1, 𝑋2) = (OWA(1)

rel (𝜇𝑄) ∘ Δ𝑞)(𝑋1, 𝑋2)

for all coherent 𝜇𝑄 : I → I and 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸).

The OWA method has several adequacy limitations that we will discuss
now. First of all it is not applicable in the case of two-place quantification if
the base set contains only one element, since the orness is not defined in that
case. The second limitation is caused by the restriction of the OWA method
to regular increasing quantifiers. Yager tried to solve this problem by introduc-
ing the so-called quantifier synthesis method [17], which consists in representing
arbitrary fuzzy linguistic quantifiers by a boolean combination of regular in-
creasing quantifiers. These regular increasing quantifiers are then translated by
the OWA method to their fuzzy models, which in turn are combined by the
same boolean combination in order to produce a fuzzy quantifier. However, in
general there are several possible decompositions of a fuzzy linguistic quantifier,
and some of them yield different results. Another inadequate behavior of the
OWA method is its failure to preserve the property of having extension for some
fuzzy quantifiers. This is demonstrated in the following example.
Example 3 (Non-extensionality of OWA [7]). Consider the universe 𝐸 = {max, susi},
the sets child = ∅, hungry = 𝐸 and the linguistic quantifier 𝑄 = at least half .
Assume 𝑄 is modeled by the fuzzy linguistic quantifier 𝜇𝑄 with

𝜇𝑄(𝑥) =
{︃

1 if 𝑥 ≥ 0.5
0 otherwise.
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Then, the evaluation of the sentence “at least half of the children are hungry”
with the OWA approach yields

OWA(2)
rel (𝜇𝑄)(child, hungry) = OWA(1)

rel (𝜇𝑄)(∅) = 0.

Now consider the extended universe 𝐸′ = 𝐸 ∪ {franz}, then without any modi-
fication of child and hungry the evaluation of the same sentence results in the
following

OWA(2)
rel (𝜇𝑄)(child, hungry) = OWA(1)

rel (𝜇𝑄)({0.5/max, 0.5/susi, 0/franz})
= 0.5.

The fuzzy quantifier OWA(2)
rel (𝜇𝑄) does therefore not have extension.

The results in the previous example are due to fact that the orness associated
with 𝜇𝑄, varies depending on the cardinality of the universe. Indeed it holds
that orness(𝜇𝑄,𝐸) = 1 and orness(𝜇𝑄,𝐸′) = 0.5 and thus Δ1(child, hungry) = ∅
and Δ0.5(child, hungry) = {0.5/max, 0.5/susi, 0/franz}.

Besides the previous inadequate behaviors it was observed by Glöckner in [7]
that “all” and “some” are the only conservative semi-fuzzy quantifiers, which can
be represented by the OWA-approach. This is formally stated in the following
proposition.

Proposition 2. Let 𝐸 be a finite set with |𝐸| > 1 and let 𝜇𝑄 : I → I such that
orness(𝜇𝑄,𝐸) ∈ (0, 1) then OWA(2)

rel (𝜇𝑄)|𝒫(𝐸)2 is not conservative.

Proof. OWA(2)
rel (𝜇𝑄)(∅, ∅) = 0 ̸= (1 − 𝑞) = OWA(2)

rel (𝜇𝑄)(∅, 𝐸).

2.3 FG-count approach
This approach is again based on a cardinality measure of fuzzy sets, namely the
FG-count, which is a fuzzy measure that was initially presented by Zadeh in [20].
The FG-count method is meant to model fuzzy quantifiers based on increasing
fuzzy linguistic quantifiers, even though it is well defined for any kind of fuzzy
linguistic quantifier, as we will later see. The FG-count measure of a fuzzy set
corresponds to a fuzzy subset of the natural numbers, which, intuitively gives
the information to which degree the fuzzy set contains at least 𝑛 elements. It
is formally defined as follows.

Definition 35 (FG-count). Let 𝐸 be a finite set and let 𝑋 ∈ ̃︀𝒫(𝐸) then the
FG-count of X, in symbols FGcount(𝑋) ∈ ̃︀𝒫(N), is characterized by

𝜇FGcount(𝑋)(𝑖) =def sup{𝛼 ∈ I : |𝑋≥𝛼| ≥ 𝑖} with sup{} = 0
= 𝜇[𝑖](𝑋).

It is not very hard to see that the FG-count represents a more informative
cardinality measure than the sigma-count, indeed the sigma-count constitutes
a summary of the FG-count, since we can express it as follows Σcount(𝑋) =∑︀𝑛

𝑖=1 𝜇[𝑗](𝑋). We are now ready to state the definition of the FG-count models
as they were initially introduced by Yager in [17].
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Definition 36 (FG-count models). Let 𝐸 be a finite base set then the FG-count
models for absolute one- and two-place quantifiers are given by

FG(1)
abs(𝜇𝑄)(𝑋1) = max{𝜇𝑄(𝑖) ∧ 𝜇FGcount(𝑋1)(𝑖) : 𝑖 ∈ {0, . . . , 𝑛}}

FG(2)
abs(𝜇𝑄)(𝑋1, 𝑋2) = FG(1)

abs(𝜇𝑄)(𝑋1 ∩ 𝑋2)

for all 𝜇𝑄 : R+ → I and 𝑋1, 𝑋2 ∈ ̃︀𝒫(𝐸). The models for relative one-place
quantifiers are defined as

FG(1)
rel (𝜇𝑄)(𝑋1) = FG(1)

abs(𝜇𝑄,𝐸)(𝑋1)

for all 𝜇𝑄 : I → I and 𝑋1 ∈ ̃︀𝒫(𝐸).

The case of two-place relative quantifiers is not covered by the FG-count
approach. This limitation greatly reduces the practical relevance of this method
since relative two-place quantification is fairly common in practical applications.
There are some possible generalizations of the FG-count models to the two-place
relative quantification, which are explained in [7]. These methods are however
somewhat problematic. This is why we will not examine them here. As it was
already mentioned earlier the FG-count approach can be applied to any fuzzy
linguistic quantifier in order to produce a fuzzy quantifier, but the resulting
quantifiers will always be increasing in all arguments.

Proposition 3. Let 𝜇𝑄 : R+ → I and 𝜇′
𝑄 : I → I then FG(1)

abs(𝜇𝑄), FG(1)
rel (𝜇′

𝑄)
are increasing and FG(2)

abs(𝜇𝑄) is increasing in both arguments.

This is why the FG-count approach is unfit to model any other quantifier
than increasing ones. In order to overcome this limitation we could again try to
apply the quantifier synthesis method, but this will as in the case of the OWA
method produce different results depending on the chosen decomposition [7].

2.4 Sugeno integral and Choquet integral approaches
This section will briefly explain the Sugeno and Choquet integral approaches,
which are of interest because of their relation to the FG-count and the OWA
methods. Both methods were defined by Bosc and Liétard in [2], and are in-
tended to operate only on increasing fuzzy linguistic quantifiers.

Definition 37 (Sugeno integral [8]). Let (𝑋, Ω, 𝜇) be a fuzzy measure space with
𝑋 = {𝑥1, ..., 𝑥𝑛} then the Sugeno integral of a function 𝑓 : 𝑋 → I is defined as

𝒮𝜇(𝑓) =
𝑛
∨

𝑖=1
(𝑓(𝑥(𝑖)) ∧ 𝜇(𝐴(𝑖)))

where the subscript (𝑖) indicates a permutation of X such that 0 ≤ 𝑓(𝑥(1)) ≤
· · · ≤ 𝑓(𝑥(𝑛)) ≤ 1, and 𝐴(𝑖) = {𝑥𝑖, . . . , 𝑥𝑛}.

Definition 38 (Sugeno integral models). Let 𝐸 ̸= ∅ be a finite set, then the
Sugeno integral models for absolute one-place quantifiers are defined as

SI(1)
abs(𝜇𝑄)(𝑋) = 𝒮𝜇𝑄∘|·|(𝜇𝑋)
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for all regular nondecreasing 𝜇𝑄 : R+ → I and 𝑋 ∈ ̃︀𝒫(𝐸). The models for
relative one-place are given by

SI(1)
rel (𝜇𝑄)(𝑋) = SI(1)

abs(𝜇𝑄,𝐸)(𝑋),

for all coherent 𝜇𝑄 : I → I and 𝑋 ∈ ̃︀𝒫(𝐸).

The Sugeno integral method is well defined in the case of nondecreasing
fuzzy linguistic quantifiers, however, in order to comply with the notion of
regular fuzzy measure the fuzzy linguistic quantifiers were originally required
to be regular. The next proposition is then an immediate consequence of the
definitions of the Sugeno integral models and the FG-count models.

Proposition 4. In the case of one-place quantification the FG-count models
and the Sugeno integral models coincide.

Proof. Let 𝐸 ̸= ∅ be a finite base set, 𝑋 ∈ ̃︀𝒫(𝐸) and 𝜇𝑄 : R+ → I be regular
nondecreasing, then

SI(1)
abs(𝜇𝑄)(𝑋) = 𝒮𝜇𝑄∘|·|(𝜇𝑋) =

𝑛
∨

𝑖=1
(𝜇𝑋(𝑥(𝑖)) ∧ 𝜇𝑄(𝑛 − 𝑖 + 1))

=
𝑛
∨

𝑖=1
(𝜇[𝑛−𝑖+1](𝑋) ∧ 𝜇𝑄(𝑛 − 𝑖 + 1))

=
𝑛
∨

𝑗=1
(𝜇[𝑗](𝑋) ∧ 𝜇𝑄(𝑗))

= FG(1)
abs(𝜇𝑄)(𝑋)

This result is interesting since it allows us to explain the FG-count by the
theory of fuzzy measures and fuzzy integrals. We will now examine the approach
based on the Choquet integral. In order to do so we first need the general
definition of the Choquet integral.

Definition 39 (Choquet integral [8]). Let (𝑋, Ω, 𝜇) be a measurable space.
Then the Choquet integral of a function 𝑓 : 𝑋 → I is defined by

𝒞𝜇(𝑓) =
𝑛∑︁

𝑖=1
(𝑓(𝑥(𝑖)) − 𝑓(𝑥(𝑖−1))) · 𝜇(𝐴(𝑖))

with the same notations as in definition 37.

We are now ready to define the Choquet integral approach for fuzzy quan-
tification.

Definition 40 (Choquet integral models). Let 𝐸 ̸= ∅ be a finite set with |𝐸| =
𝑛, then the models for absolute one-place quantifiers are given by

CI(1)
abs(𝜇𝑄)(𝑋) = 𝒞𝜇𝑄∘|·|(𝜇𝑋)

for any regular nondecreasing 𝜇𝑄 : R+ → I and all 𝑋 ∈ ̃︀𝒫(𝐸). The models for
relative one-place quantifiers are defined as

CI(1)
rel (𝜇𝑄)(𝑋) = CI(1)

abs(𝜇𝑄,𝐸)(𝑋)

for all coherent 𝜇𝑄 : I → I and 𝑋 ∈ ̃︀𝒫(𝐸).
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The next proposition is then an immediate consequence of the previous def-
inition and the definition of the OWA models.

Proposition 5. In the case of relative one-place quantification the OWA models
coincide with the Choquet integral models.

Proof. Let 𝐸 ̸= ∅ be a finite base set with |𝐸| = 𝑛, 𝑋 ∈ ̃︀𝒫(𝐸) and 𝜇𝑄 : R+ → I
be regular nondecreasing, then

CI(1)
abs(𝜇𝑄)(𝑋) = 𝒞𝜇𝑄∘|·|(𝜇𝑋) =

𝑛∑︁
𝑖=1

(𝜇𝑋(𝑥(𝑖)) − 𝜇𝑋(𝑥(𝑖−1))) · 𝜇𝑄(𝑛 − 𝑖 + 1)

=
𝑛∑︁

𝑖=1
(𝜇[𝑛−𝑖+1](𝑋) − 𝜇[𝑛−𝑖+2](𝑋)) · 𝜇𝑄(𝑛 − 𝑖 + 1)

=
𝑛∑︁

𝑗=1
(𝜇[𝑗](𝑋) − 𝜇[𝑗+1](𝑋)) · 𝜇𝑄(𝑗)

=
𝑛∑︁

𝑗=1
𝜇[𝑗](𝑋)(𝜇𝑄(𝑗) − 𝜇𝑄(𝑗 − 1))

Hence, for all coherent 𝜇𝑄′ : I → I and all 𝑋 ′ ∈ ̃︀𝒫(𝐸) we have,

CI(1)
rel (𝜇𝑄′)(𝑋 ′) = CI(1)

abs(𝜇𝑄′,𝐸)(𝑋 ′)

=
𝑛∑︁

𝑗=1
𝜇[𝑗](𝑋 ′)(𝜇𝑄′,𝐸(𝑗) − 𝜇𝑄′,𝐸(𝑗 − 1))

= OWA(1)
rel (𝜇𝑄′)(𝑋 ′).

Both, the Sugeno integral method and the Choquet integral method can
be generalized to the case of infinite base sets. Such generalizations have been
proposed by Ying in [19] and by Cui and Li in [3].

2.5 The 𝒢-family approach
In [4] Delgado et al. present a whole family of evaluation methods based on
the family ℰ of cardinalities of fuzzy sets defined below. The so-called 𝒢-family
of evaluation methods is mainly intended to model the case of absolute and
relative one-place quantification, however, the authors also give generalizations
of chosen methods to the case of two-place quantification. The methods of the
𝒢-family extend most of the previously explained methods and are, therefore,
very interesting from a theoretical point of view.

In order to understand the 𝒢-family approach, we must define the ℒ-family,
that is a family of cardinality measures of fuzzy sets based on t-norms and
t-conorms.

Definition 41 (ℒ-family). Let 𝐸 be a finite base set with |𝐸| = 𝑛, then the
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ℒ-family is the set of functions 𝜆⊤,⊥
𝑋 : N → I with

𝜆⊤,⊥
𝑋 (𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑗 = 0
1 if 𝑗 > |𝐸|

⊥
(𝑖1,...,𝑖𝑗)∈𝐼𝑗

(
𝑗

⊤
𝑘=1

𝜇𝑋(𝑥𝑖𝑘
)) if 1 ≤ 𝑗 ≤ |𝐸|

where 𝑋 ∈ ̃︀𝒫(𝐸), ⊤ is any t-norm, ⊥ is any t-conorm and 𝐼𝑗 = {(𝑖1, . . . , 𝑖𝑗) ∈
{1, . . . , 𝑛}𝑗 : 𝑖𝑚 < 𝑖𝑚+1, 1 ≤ 𝑚 < 𝑗}.

The functions of the ℒ-family may also be understood as fuzzy subsets of the
natural numbers that express the degree to which a given set 𝑋 contains at least
𝑗 elements. This family of fuzzy cardinality counts is then used to define another
family of cardinality counts, namely the ℰ-family, whose functions characterize
fuzzy sets of the natural numbers that represent the possibility that a given
fuzzy set 𝑋 contains exactly 𝑗 elements.

Definition 42 (ℰ-family). Let 𝐸 be a finite base set, then the ℰ-family is the
set of functions 𝜀⊤,̃︀¬

𝑋 : N → I with

𝜀⊤,̃︀¬
𝑋 (𝑗) = ⊤(𝜆𝑋(𝑗), ̃︀¬𝜆𝑋(𝑗 + 1)),

where 𝑋 ∈ ̃︀𝒫(𝐸), ⊤ is any t-norm, ̃︀¬ is a fuzzy negation and 𝜆 ∈ ℒ.

We are are now ready to formalize the class 𝒢 of evaluation methods.

Definition 43 (𝒢 models). Let 𝐸 be a finite base set with |𝐸| = 𝑛, then the
𝒢-family consists of the functions given below for the absolute and the relative
case, respectively:

G(1),⊤,⊥
abs (𝜇𝑄)(𝑋) =

𝑛

⊥
𝑖=0

(⊤(𝜀𝑋(𝑖), 𝜇𝑄(𝑖)),

for all 𝜇𝑄 : R+ → I, 𝑋 ∈ ̃︀𝒫(𝐸), any t-norm ⊤, any t-conorm ⊥ and any 𝜀 ∈ ℰ.

G(1),⊤,⊥
rel (𝜇𝑄)(𝑋) = G(1),⊤,⊥

abs (𝜇𝑄,𝐸)(𝑋),

for all 𝜇𝑄 : I → I and 𝑋 ∈ ̃︀𝒫(𝐸), any t-norm ⊤ and any t-conorm ⊥ .

The authors of this family identify furthermore two particular methods called
the GD and GZ methods. These methods are interesting in that they generalize
the Choquet integral method and the Sugeno integral method, respectively [4].

2.6 Representational level approach
Another interesting approach is presented in [14]. This approach differs from
the previous ones in that it uses representational levels to model vagueness. A
representational level consists of a set of levels that are associated each with
a crisp subset of the base set. Formally, a representational level (RL) can be
defined as follows.

Definition 44 (Representational level). Let 𝐸 be a base set then an RL is a
pair 𝑋 = (Λ, 𝜌) with Λ ∈ 𝒫(I) and 𝜌 : Λ → 𝒫(𝐸). We call Ω𝑋 = {𝜌(𝛼) : 𝛼 ∈ Λ}
the set of crisp representatives of 𝑋.
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Obviously RLs are defined in the case of the base set being infinite and
possibly continuous. In the following we will, however, restrict our attention to
the finite case since the method in [14] is also restricted to the finite case. We
can now define the RL representation of a fuzzy set.

Definition 45. Let 𝐸 be a finite base set. Then the RL representation of
𝑋 ∈ ̃︀𝒫(𝐸) is the pair (Λ𝑋 , 𝜌𝑋) with

Λ𝑋 = {𝜇𝑋(𝑒) : 𝑒 ∈ support(𝑋)} ∪ {1} and 𝜌𝑋(𝛼) = 𝑋≥𝛼.

The (fuzzy) set operations union, intersection and complementation can be
extended to RLs, but these are usually defined level-wise. This can be problem-
atic since the level-wise complementation of an RL representing a fuzzy set will
in general not result in an RL representing a fuzzy set.

Before we can proceed to the definition of the RL approach, we need to
define the compatibility of two fuzzy sets in terms of their RL representations.

Definition 46. Let 𝐴, 𝐵 be fuzzy sets and let (Λ𝐴, 𝜌𝐴), (Λ𝐵 , 𝜌𝐵) be their re-
spective RLs then the compatibility of A to B (B/A) is the RL (Λ𝐵/𝐴, 𝜌𝐵/𝐴)
with Λ𝐵/𝐴 = Λ𝐵 ∪ Λ𝐴 and

𝜌𝐵/𝐴(𝛼) = |𝜌𝐴(𝛼) ∩ 𝜌𝐵(𝛼)|
|𝜌𝐴(𝛼)| , for all 𝛼 ∈ Λ𝐵/𝐴.

It should be noticed that the value of 𝜌𝐵/𝐴(𝛼) is not defined in the case of
𝜌𝐴(𝛼) = ∅, this case has been silently ignored in the literature. Any models
based on this compatibility measure are therefore not applicable in the case of
the quantifier restriction 𝐴 being a non-normalized fuzzy set, i.e. if 1 ̸∈ 𝜇̂𝐴(𝐸).
We are now ready to define the first part of the RL evaluation method for the
case of relative two-place quantification.

Definition 47 (RL models). Let 𝐸 be a finite base set, then the models for
relative two-place quantification are defined as

rl(2)
rel (𝜇𝑄)(𝑋1, 𝑋2) = (Λ𝑋2/𝑋1 , 𝜇𝑄 ∘ 𝜌𝑋2/𝑋1),

for all 𝜇𝑄 : I → I, all normalized 𝑋1 ∈ ̃︀𝒫(𝐸) and all 𝑋2 ∈ ̃︀𝒫(𝐸).

This approach yields a RL instead of a truth value and is therefore not
entirely compatible with our idea of fuzzy quantifiers. We must thus use a sum-
marization function to compute a truth value corresponding to the resulting RL.
A concrete instantiation of this approach based on a probabilistic summariza-
tion method is given in [14]. The method uses the following probability density
𝑝𝑋 over the crisp representatives of an RL 𝑋 to realize the aggregation.

Definition 48. Let 𝑋 = (Λ𝑋 , 𝜌𝑋) be an RL with Λ𝑋 = {𝛼1, . . . , 𝛼𝑚} such that
1 = 𝛼1 > · · · > 𝛼𝑚 > 𝛼𝑚+1 = 0. Then the probability density 𝑝𝑋 : Ω𝑋 → I is
given by

𝑝𝑋(𝑌 ) =
∑︁

𝛼𝑖∈Λ𝑋 :𝑌 =𝜌𝑋 (𝛼𝑖)

𝛼𝑖 − 𝛼𝑖+1, for all 𝑌 ∈ Ω𝑋

We are now ready to formalize the evaluation method given by Sánchez et
al. in [14], which corresponds to the expected value of the quantification results
produced by rl(2)

rel .
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Definition 49 (RL models). Let E be a finite base set, then the RL models for
the case of relative two-place quantification is given by

RL(2)
rel (𝜇𝑄)(𝑋1, 𝑋2) =

∑︁
𝛽∈ΩΞ

𝜌Ξ(𝛽) · 𝛽, with Ξ = rl(2)
rel (𝜇𝑄)(𝑋1, 𝑋2),

for all 𝜇𝑄 : I → I, all normalized 𝑋1 ∈ ̃︀𝒫(𝐸) and all 𝑋2 ∈ ̃︀𝒫(𝐸).

This concrete RL method coincides with a particular case of the somewhat
similar method introduced by Liétard and Rocacher in [11], in which the quan-
tification is represented as a gradual truth value i.e. a fuzzy subset of I that is
subsequently reduced to a truth value.

Because of their different representation the methods based on representa-
tional levels are mostly incompatible with the definitions of formal adequacy
criteria used for the classical methods. Therefore, this approach has not yet
been systematically analyzed for adequacy.

3 Methods based on semi-fuzzy quantifiers
Besides the approaches based on fuzzy linguistic quantifiers that we have con-
sidered in the previous section, there is another important family of more recent
approaches that use semi-fuzzy quantifiers as the specification of fuzzy quanti-
fiers. From the perspective of generality the use of semi-fuzzy quantifiers has
several advantages over fuzzy linguistic quantifiers. Semi-fuzzy quantifiers can
take any number of arguments that range over subsets of the base set and are,
therefore, structurally much more similar to fuzzy quantifiers. This structural
similarity allows for a more systematic projection of semi-fuzzy quantifiers into
the space of fuzzy quantifiers. Furthermore, the specification of adequacy crite-
ria for methods using semi-fuzzy quantifiers is more straightforward (see 3.2.1).

3.1 Representational levels
The representational level approach described above can be extended by means
of semi-fuzzy quantifiers in a straightforward manner to the case of multi-place
quantification [13]. We will only have a brief overview since the method is very
similar to that which uses fuzzy linguistic quantifiers.

Definition 50 (RL models). Let 𝐸 ̸= ∅ and 𝑄 : 𝒫(𝐸)𝑛 → I be an 𝑛-ary
semi-fuzzy quantifier. Then the RL model for 𝑛-place quantification is given by

RL2(𝑄)(𝑋1, . . . , 𝑋𝑛) = (
𝑛⋃︁

𝑖=1
Λ𝑋𝑖

, 𝑄 ∘
𝑛
×

𝑖=1
𝜌𝑋𝑖

)

for all 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸), where (Λ𝑋1 , 𝜌𝑋1), . . . , (Λ𝑋𝑛 , 𝜌𝑋𝑛) are their respec-
tive RL representations.

Again the result is an RL which needs to be summarized to a fuzzy truth
value in order to obtain a fuzzy quantifier according to our definition. There
are various methods to accomplish this, one of them can be found in [13].
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3.2 Quantifier fuzzification mechanisms
In [7] Glöckner introduces a very general approach to fuzzy quantification, which
is based on the so-called quantifier fuzzification mechanisms, or QFMs for short.
The concept of a QFM corresponds to a mapping that maps semi-fuzzy quan-
tifiers to fuzzy quantifiers. Formally a QFM is as defined below.

Definition 51 (Quantifier fuzzification mechanism). A quantifier fuzzification
mechanism is a mapping ℱ : (𝒫(𝐸)𝑛 → I) → ( ̃︀𝒫(𝐸)𝑛 → I) that assigns to each
semi-fuzzy quantifier 𝑄 a fuzzy quantifier ℱ(𝑄).

So far QFMs are completely unrestricted and any mapping that maps any
semi-fuzzy quantifier to a fuzzy quantifier is a QFM, but obviously there are
many QFMs that do not represent adequate translations schemes. Therefore,
Glöckner introduced the concept of determiner fuzzification scheme (DFS),
which are QFMs that respect certain adequacy constraints that are considered
to be necessary to produce linguistic adequate fuzzy quantifiers.

3.2.1 Introduction to DFS-Theory

We will now concern ourselves with the concept of determiner fuzzification
schemes which restricts the set of plausible QFMs. Before we can see the ax-
iomatic definition of a DFS we must consider several concepts related to QFMs.

First of all we need to consider the concept of projection quantifiers, which
in the crisp case corresponds to a predicate that given an element and a set
returns true if the element belongs to that set. We can extend this behavior
naturally to fuzzy sets by using the membership degree of the element and the
given set.

Definition 52 (Projection quantifier). Let 𝐸 be the base set and 𝑒 ∈ 𝐸. We
define the projection quantifier 𝜋𝑒 : 𝒫(𝐸) → I by

𝜋𝑒(𝑌 ) = 𝜒𝑌 (𝑒),

for all 𝑌 ∈ 𝒫(𝐸). Analogously we define the fuzzy projection quantifier ̃︀𝜋𝑒 :̃︀𝒫(𝐸) → I by ̃︀𝜋𝑒(𝑋) = 𝜇𝑋(𝑒),

for all 𝑋 ∈ ̃︀𝒫(𝐸).

One problem with fuzzy logic is the possibility for truth functions to have
several possible plausible extensions, however not every extension is perfectly
compatible with the way we interpret the fuzzy quantifiers. QFMs have the nice
property of inducing truth functions, which solves the problem of choosing an
adequate set of connectives. In order to define the induced truth functions it
is useful to interpret 𝑛-tuples of truth values as (fuzzy) subsets of the numbers
{1, . . . , 𝑛}.

Definition 53. We define the mapping 𝜂 : 2𝑛 → 𝒫({1, . . . , 𝑛}) by

𝜂(𝑏1, . . . , 𝑏𝑛) = {𝑘 ∈ {1, . . . , 𝑛} : 𝑏𝑘 = 1},

for all 𝑏1, . . . , 𝑏𝑛 ∈ 2. Furthermore, the mapping ̃︀𝜂 : I𝑛 → ̃︀𝒫({1, . . . , 𝑛}) is
characterized by

𝜇̃︀𝜂(𝑥1,...,𝑥𝑛)(𝑘) = 𝑥𝑘,
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for all 𝑥1, . . . , 𝑥𝑛 ∈ I and all 𝑘 ∈ {1, . . . , 𝑛}.

We are now ready to formulate the concept of induced truth function. The
definition uses the previously defined bijective mapping 𝜂 to represent semi-fuzzy
truth functions as a semi-fuzzy quantifier which is then translated by means of
the QFM to a fuzzy quantifier. The induced truth function is then obtained by
composing the previously obtained fuzzy quantifier with the function ̃︀𝜂.

Definition 54 (Induced truth functions). Let ℱ be a QFM, 𝑛 ∈ N and 𝑓 :
2𝑛 → I. Then, the semi-fuzzy quantifier 𝑄𝑓 : 𝒫({1, . . . , 𝑛}) → I is given by

𝑄𝑓 (𝑋) = 𝑓(𝜂−1(𝑋)),

for all 𝑋 ∈ 𝒫({1, . . . , 𝑛}). The induced truth function ̃︀ℱ(𝑓) : I𝑛 → I is defined
in terms of 𝑄𝑓 ̃︀ℱ(𝑓)(𝑥1, . . . , 𝑥𝑛) = ℱ(𝑄𝑓 )(̃︀𝜂(𝑥1, . . . , 𝑥𝑛)),

for all 𝑥1, . . . , 𝑥𝑛 ∈ I.

In the context of a given QFM ℱ we denote by ̃︀¬, ̃︀∧, ̃︀∨ the induced fuzzy
connectives i.e. ̃︀¬ = ℱ(¬), ̃︀∧ = ℱ(∧) and ̃︀∨ = ℱ(∨). Furthermore, we denote
by ̃︀¬, ̃︀∩, ̃︀∪ the “induced” fuzzy set operations defined in terms of the induced
fuzzy connectives. For instance, the induced fuzzy complement is characterized
by ̃︀¬𝑋 = ̃︀¬𝜇𝑋(𝑒),

for all 𝑒 ∈ 𝐸 and all 𝑋 ∈ ̃︀𝒫(𝐸).
The definition of a DFS will also be concerned about how a QFM behaves

with functional application on the arguments, this means we will need to talk
about how a QFM transforms functions that are applied to the arguments of a
semi-fuzzy quantifier. We, therefore, introduce the notion of induced extension
principle. As in the case of induced truth functions the notion of an induced
extension principle avoids us to manually choose an extension principle which
is compatible with the given QFM.

Definition 55 (Induced extension principle). Assume ℱ is a QFM, then its
induced extension principle ̂︀ℱ assigns to each 𝑓 : 𝐸 → 𝐸′ with 𝐸, 𝐸′ ̸= ∅ a
mapping ̂︀ℱ(𝑓) : ̃︀𝒫(𝐸) → ̃︀𝒫(𝐸′) characterized by

𝜇̂︀ℱ(𝑓)(𝑋)(𝑒
′) = ℱ(𝜋𝑒′ ∘ 𝑓)(𝑋),

for all 𝑋 ∈ ̃︀𝒫(𝐸) and 𝑒′ ∈ 𝐸′.

We are now ready to formulate the compatibility with functional applica-
tion, which requires a QFM to generate the same fuzzy quantifiers regardless of
whether the function is applied before fuzzification or if its fuzzy counterpart is
applied to the fuzzified quantifier.

Definition 56. Let 𝑔1, . . . , 𝑔𝑛 : 𝐴 → 𝐵 then we denote by
𝑛
×

𝑖=1
𝑔𝑖 : 𝐴𝑛 → 𝐵𝑛 the

product mapping which is defined by
𝑛
×

𝑖=1
𝑔𝑖(𝑥1, . . . , 𝑥𝑛) = (𝑔1(𝑥1), . . . , 𝑔𝑛(𝑥𝑛)),

whenever 𝑔1(𝑥1), . . . , 𝑔𝑛(𝑥𝑛) are defined.
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Definition 57 (Compatibility to functional application). We say that a QFM
ℱ is compatible with functional application, if it satisfies

ℱ(𝑄 ∘
𝑛
×

𝑖=1
𝑓𝑖) = ℱ(𝑄) ∘

𝑛
×

𝑖=1
̂︀ℱ(𝑓𝑖),

for all 𝑄 : 𝒫(𝐸) → I and all 𝑓1, . . . , 𝑓𝑛 : 𝐸′ → 𝐸 with 𝐸′ ̸= ∅.

We have now seen all definitions that are necessary to provide a concise
axiomatization for the concept of quantifier fuzzification schemes.

Definition 58 (Determiner fuzzification scheme). A QFM ℱ is called a de-
terminer fuzzification scheme – DFS for short – if the following conditions are
satisfied for every semi-fuzzy quantifier 𝑄 : 𝒫(𝐸)𝑛 → I

ℱ(𝑄)|𝒫(𝐸)𝑛 = 𝑄, if 𝑛 ≤ 1, (Correct generalization)
ℱ(𝑄) = ̃︀𝜋𝑒, if 𝑄 = 𝜋𝑒 for some 𝑒 ∈ 𝐸, (Projection quantifiers)

ℱ(𝑄̃︀�) = ℱ(𝑄)̃︀�, 𝑛 > 0 (Dualization)
ℱ(𝑄∪) = ℱ(𝑄)̃︀∪, 𝑛 > 0 (Internal joins)
if 𝑄 is decreasing in the 𝑛-th argument, (Preservation of monotonicity)
then ℱ(𝑄) is decreasing in the 𝑛-th argument, 𝑛 > 0
ℱ is compatible with functional application. (Functional application)

Note that the axioms above are independent of each other, i.e. no axiom is
redundant. It can be shown that they properly express the corresponding ade-
quacy constraints. Moreover the DFS axioms entail many other useful properties
like e.g. the compatibility with argument transposition, cylindrical extensions,
the formation of antonyms, quantifier negation, argument intersections, etc. for
more details see [7].

Even though the DFS axioms considerably restrict the space of plausible
QFMs, we need further restrictions to find the practically relevant DFSes.
Therefore we classify the DFSes according to their induced fuzzy disjunction
and negation.

Definition 59 ((̃︀¬, ̃︀∨)-DFSes). A DFS ℱ such that ̃︀¬ = ̃︀ℱ(¬) and ̃︀∨ = ̃︀ℱ(∨)
is called a (̃︀¬, ̃︀∨)-DFS.

The practically most interesting DFSes are those that induce the standard
fuzzy connectives.

Definition 60 (Standard DFSes). Any (¬, ∨)-DFS is also called a standard
DFS.

3.2.2 Glöckner’s QFMs

In the following we will consider an important class of DFSes investigated by
Glöckner in [7] and understand its structure. In particular we will consider the
construction of the ℳ𝐶𝑋 -DFS which has unique adequacy properties.

The first class of QFMs analyzed by Glöckner is based on a three valued
cut depending on a parameter 𝛾, also called the uncertainty, which defines the
range of the cut.
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Definition 61 (Three-valued ambiguity range). Let 𝐸 be a set, 𝑋 ∈ ̃︀𝒫(𝐸) and
𝛾 ∈ I then we define 𝒯𝛾(𝑋) ⊆ 𝒫(𝐸) and 𝑋min

𝛾 , 𝑋max
𝛾 ∈ 𝒫(𝐸) by

𝒯𝛾(𝑋) = {𝑌 : 𝑋min
𝛾 ⊆ 𝑌 ⊆ 𝑋max

𝛾 },

𝑋min
𝛾 =

{︃
𝑋≥ 1

2 + 1
2 𝛾 , if 𝛾 > 0

𝑋> 1
2
, otherwise,

𝑋max
𝛾 =

{︃
𝑋> 1

2 − 1
2 𝛾 , if 𝛾 > 0

𝑋≥ 1
2
, otherwise.

Intuitively, the ambiguity range 𝒯𝛾(𝑋) can be thought of as the set of crisp
representatives of the fuzzy set 𝑋, where 𝛾 is the tolerance up to which an
element with membership degree below 1

2 can be part of a crisp representative.
The sets in the ambiguity range are then evaluated by the semi-fuzzy quan-

tifier and finally the quantification results are aggregated using the following
fuzzy median in order to obtain a fuzzy quantifier for a given uncertainty level
𝛾.
Definition 62 (Fuzzy medians). We define the fuzzy median med 1

2
: I × I → I

by

med 1
2
(𝑢1, 𝑢2) =

⎧⎪⎨⎪⎩
min(𝑢1, 𝑢2), if min(𝑢1, 𝑢2) > 1

2
max(𝑢1, 𝑢2), if max(𝑢1, 𝑢2) < 1

2
1
2 , otherwise

for all 𝑢1, 𝑢2 ∈ I. We define furthermore the generalized fuzzy median m 1
2

:
𝒫(I) → I by

m 1
2
(𝑋) = med 1

2
(inf 𝑋, sup 𝑋)

for all 𝑋 ∈ 𝒫(I).
Definition 63. Let 𝛾 ∈ I, then we define the QFM (·)𝛾 by

𝑄𝛾(𝑋1, . . . , 𝑋𝑛) = m 1
2
({𝑄(𝑌1, . . . , 𝑌𝑛) : 𝑌𝑖 ∈ 𝒯𝛾(𝑋𝑖), 𝑖 ∈ {1, . . . , 𝑛}})

for all semi-fuzzy quantifiers 𝑄 : 𝒫(𝐸)𝑛 → I and all 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).
Finally, by aggregating the results for every uncertainty level using an inte-

gral we obtain the QFM defined below.
Definition 64. We define the quantifier fuzzification mechanism ℳ as follows

ℳ(𝑄)(𝑋1, . . . , 𝑋𝑛) =
∫︁ 1

0
𝑄𝛾(𝑋1, . . . , 𝑋𝑛)𝑑𝛾

for all semi-fuzzy quantifiers 𝑄 : 𝒫(𝐸)𝑛 → I and 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).
Glöckner then found the following interesting result about the QFM ℳ.

Theorem 1. ℳ is a standard DFS.
From there on Glöckner observed that it is possible to define a whole family

of QFMs by simply replacing the integral in the definition of ℳ by suitable
aggregation operators. In order to be able to formulate this family of QFMs it
is necessary to determine on which domain the aggregation operators can work
on. It turned out that the set B defined below contains all possible functions
that may arise by applying the QFM (·)𝛾 to any semi-fuzzy quantifier.
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Definition 65. The sets B,B+,B 1
2 ,B− ⊆ II are defined by

B+ = {𝑓 ∈ II : 𝑓(0) >
1
2 , 𝑓(I) ⊆

[︂
1
2 , 1

]︂
, 𝑓 is decreasing},

B
1
2 = {𝑓 ∈ II : 𝑓(𝑥) = 1

2 for all 𝑥 ∈ I}

B− = {𝑓 ∈ II : 𝑓(0) <
1
2 , 𝑓(I) ⊆

[︂
0,

1
2

]︂
, 𝑓 is increasing},

B = B+ ∪ B
1
2 ∪ B−

The family of QFMs referred to above is called the ℳℬ-family, it is formally
defined as follows.

Definition 66 (ℳℬ-QFMs). Let ℬ : B → I then we denote by ℳℬ the QFM
defined by

ℳℬ(𝑄)(𝑋1, . . . , 𝑋𝑛) = ℬ((𝑄𝛾(𝑋1, . . . , 𝑋𝑛))𝛾∈I)

for all 𝑄 : 𝒫(𝐸)𝑛 → I and 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).

In [7] Glöckner analyses the properties of the whole class of ℳℬ-QFMs and
comes to the conclusion that every ℳℬ-QFM is a standard DFS.

Theorem 2. Every ℳℬ-QFM is a standard DFS.

Glöckner furthermore analyzed several individual DFSes of this class and
found one QFM, namely ℳ𝐶𝑋 , which exhibits a unique behavior amongst all
standard DFSes. Indeed it is the only standard model that is compatible with
fuzzy argument insertion and moreover it is suspected to be the only standard
model which weakly preserves convexity, for more details about these properties
see [7].

Definition 67. By ℳ𝐶𝑋 we denote the ℳℬ-QFM defined by

ℬ𝐶𝑋(𝑓) =

⎧⎪⎨⎪⎩
1
2 + 1

2 sup{min(𝑥, 2 · 𝑓(𝑥) − 1) : 𝑥 ∈ I}, if 𝑓 ∈ B+

1
2 , if 𝑓 ∈ B 1

2

1
2 − 1

2 sup{min(𝑥, 1 − 2 · 𝑓(𝑥)) : 𝑥 ∈ I}, if 𝑓 ∈ B−

for all 𝑓 ∈ B.

It was found by Glöckner that the ℳ𝐶𝑋 model properly generalizes the
previously stated method based on the Sugeno integral.

According to Glöckner the model ℳ𝐶𝑋 constitutes the best model of fuzzy
quantification with regard to linguistic adequacy. Nevertheless, he continued the
exploration of other classes of DFSes in order fo find more theoretically relevant
models with greater discriminatory force. One of the classes investigated by
Glöckner is the class ℱ𝜉, which arises from a generalization of the family ℳℬ.
This class ℱ𝜉 was found to contain a particular method, namely ℱ𝐶ℎ, which
generalizes the Choquet integral method mentioned in section 2.4 [7].
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3.2.3 Díaz-Hermida’s QFMs

Díaz-Hermida et al. introduce in [6] a new family of QFMs based on a probabilis-
tic voting-model. As observed by the authors the QFMs defined in the following
are only well defined in the case of a finite base set, thus, strictly speaking these
models are not QFMs but because of their similarity to Glöckners idea of QFMs
we will call them finite QFMs.

A ℱ𝑃 -QFM can be seen as an expected value of the semi-fuzzy quantifier
over a given joint probability distribution of the 𝛼-cut levels of the arguments.

Definition 68. Let E be a finite base set 𝑃 : I𝑛 → I be a probability density
function then we denote by ℱ𝑃 the finite QFM defined by

ℱ𝑃 (𝑄)(𝑋1, . . . , 𝑋𝑛)

=
∫︁ 1

0
· · ·

∫︁ 1

0
𝑄((𝑋1)≥𝛼1 , . . . , (𝑋𝑛)≥𝛼𝑛)𝑃 (𝛼1, . . . , 𝛼𝑛)𝑑𝛼𝑛 . . . 𝑑𝛼1

for all semi-fuzzy quantifiers 𝑄 : 𝒫(𝐸)𝑛 → I and 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).

The first finite QFM defined by the authors is based on the maximum de-
pendence model, which assumes that all voters choose the same focal element.

Definition 69. By ℱ𝑀𝐷 we denote the finite ℱ𝑃 -QFM defined in terms of
𝑃 𝑀𝐷 with

𝑃 𝑀𝐷(𝛼1, . . . , 𝛼𝑛) =
{︃

1 if 𝛼1 = · · · = 𝛼𝑛

0 otherwise

for all 𝛼1, . . . , 𝛼𝑛 ∈ I. We therefore have

ℱ𝑀𝐷(𝑄)(𝑋1, . . . , 𝑋𝑛) =
∫︁ 1

0
𝑄((𝑋1)≥𝛼, . . . , (𝑋𝑛)≥𝛼)𝑑𝛼

for all semi-fuzzy quantifiers 𝑄 : 𝒫(𝐸)𝑛 → I and 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).

The second particular ℱ𝑃 -QFM is the so-called independence model which
assumes that voters are perfectly independent in their choice of the focal ele-
ment.

Definition 70. By ℱ𝐼 we denote the finite ℱ𝑃 -QFM defined by 𝑃 𝐼(𝛼1, . . . , 𝛼𝑛) =
1 for all 𝛼1, . . . , 𝛼𝑛, i.e.

ℱ𝐼(𝑄)(𝑋1, . . . , 𝑋𝑛) =
∫︁ 1

0
· · ·

∫︁ 1

0
𝑄((𝑋1)≥𝛼1 , . . . , (𝑋𝑛)≥𝛼𝑛

)𝑑𝛼𝑛 . . . 𝑑𝛼1

for all semi-fuzzy quantifiers 𝑄 : 𝒫(𝐸)𝑛 → I and 𝑋1, . . . , 𝑋𝑛 ∈ ̃︀𝒫(𝐸).

The authors furthermore defined another model ℱ𝐴𝐷 called the approxi-
mate dependence model, which is based on the assumption that voters select
approximately the same focal elements for different properties. Since this mod-
els needs to relate the arguments of the semi-fuzzy quantifier and depends on
several parameters it is much more complicated to define, this is why we will
not consider its definition. The interested reader can find a definition for the
case of two-place quantification in [6].
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The analysis of these models by Díaz-Hermida et al. in [6] revealed that the
maximum dependency and independence models exhibit an adequate behavior.
However, even in the finite case these QFMs do not represent DFSes, since the
maximum dependency model fails to satisfy the dualization property, whereas
the independence model fails to satisfy the internal joins.

4 Polyadic fuzzy quantification
So far we have only considered methods that are able to deal with the case
of monadic quantification i.e. quantification over (fuzzy) subsets of the base
set. But there are cases where a quantifier may not only bind subsets but also
arbitrary relations over the base set. This is for example the case, if we try to
model the meaning of sentences like (a) “Most men and most women like each
other” and (b) “At least three girls gave more roses than lilies to John”. These
sentences might be represented as the polyadic Lindström quantifiers

𝑄′
𝑥,𝑦,𝑥𝑦(𝑚𝑎𝑛(𝑥), 𝑤𝑜𝑚𝑎𝑛(𝑦), 𝑙𝑖𝑘𝑒(𝑥, 𝑦))

𝑄′′
𝑥,𝑦,𝑧,𝑥𝑦𝑧(𝑔𝑖𝑟𝑙(𝑥), 𝑟𝑜𝑠𝑒(𝑦), 𝑙𝑖𝑙𝑦(𝑧), 𝑔𝑖𝑣𝑒(𝑥, 𝑦, 𝑧))

of type ⟨1, 1, 2⟩ and ⟨1, 1, 1, 3⟩, respectively [7, 10].
In the literature there is yet only one notable approach to fuzzy polyadic

quantification. This approach was introduced by Glöckner, who was particu-
larly interested in the case of branching quantification [7]. Branching quan-
tification occurs, if several quantifiers operate in parallel and independently of
each other. To illustrate this, consider again the sentence (a) given above. It
seems that two independent quantifiers are required to capture the mutuality
of the concept expressed in this sentence. Indeed it is commonly believed that
branching quantification is required to capture the meaning of propositions in-
volving predicates that express reciprocity [7]. Glöckner argues that without
branching quantification the sentence must be expressed as a linear succession
of quantifiers, which essentially allows for the following two possibilities:

𝑚𝑜𝑠𝑡(𝑚𝑎𝑛) 𝑥̂[𝑚𝑜𝑠𝑡(𝑤𝑜𝑚𝑎𝑛) 𝑦[𝑙𝑖𝑘𝑒(𝑥, 𝑦)]],
𝑚𝑜𝑠𝑡(𝑤𝑜𝑚𝑎𝑛) 𝑦[𝑚𝑜𝑠𝑡(𝑚𝑎𝑛) 𝑥̂[𝑙𝑖𝑘𝑒(𝑥, 𝑦)]].

These representations of (a), however, do not capture the intended symmetry
for they rather represent the meaning “Most men like most women” and vice-
versa. Not even the conjunction of both formulas would capture the intended
mutuality. Glöckner therefore suggests the use of Lindström quantifiers to han-
dle the case of branching quantification and proposes the following type ⟨1, 1, 2⟩
quantifier to represent the sentence (a) (assuming the crisp case for simplicity)

𝑄(𝐴, 𝐵, 𝑅) =
{︃

1 if ∃𝑈 × 𝑉 ⊆ 𝑅 : 𝑄most(𝐴, 𝑈) ∧ 𝑄most(𝐵, 𝑉 )
0 otherwise.

In the following we will consider Glöckner’s approach to fuzzy polyadic quan-
tification which principally consists of a straightforward extension of his QFM
framework. For brevity we will omit most of the details which can be found in
[7], the essence of the approach should nevertheless be easily understood. Glöck-
ner starts by providing a generalization of (semi-)fuzzy quantifiers, the so-called
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(semi-)fuzzy L-quantifiers. The prefix “L” indicates that these quantifiers are a
generalized form of Lindström quantifiers which in their original form were not
suited to linguistic applications.

Definition 71 ((Semi-)fuzzy L-quantifiers). A semi-fuzzy L-quantifier 𝑄 of
type ⟨𝑡1, . . . , 𝑡𝑛⟩ on a base set 𝐸 ̸= ∅ is a mapping 𝑄 : ×𝑛

𝑖=1 𝒫(𝐸𝑡𝑖) → I, that
assigns to each choice of arguments 𝑌1 ∈ 𝒫(𝐸𝑡1), . . . , 𝑌𝑛 ∈ 𝒫(𝐸𝑡𝑛) a result
𝑄(𝑌1, . . . , 𝑌𝑛) ∈ I. A fuzzy L-quantifier ̃︀𝑄 of type ⟨𝑡1, . . . , 𝑡𝑛⟩ on a base set
𝐸 ̸= ∅ is a mapping ̃︀𝑄 : ×𝑛

𝑖=1
̃︀𝒫(𝐸𝑡𝑖) → I.

The concept of QFM is now easily extended to the case of polyadic quantifi-
cation.

Definition 72 (L-QFMs). An L-quantifier fuzzification mechanism ℱ assigns
to each semi-fuzzy L-quantifier of type ⟨𝑡1, . . . , 𝑡𝑛⟩ a fuzzy L-quantifier ℱ(𝑄) of
the same type.

Then, analogous to the monadic case it is possible to define the concept of
L-DFS which restricts the space of L-QFMs to the plausible ones. To do so
Glöckner found that every L-QFM ℱ has an ordinary QFM denoted by ℱ𝑅

which he used to define the induced truth functions and the induced extension
principle of L-QFMs.

Definition 73 (L-DFS). A L-QFM ℱ is called an L-DFS if the following condi-
tions are satisfied for every semi-fuzzy quantifier 𝑄 :

𝑛
×

𝑖=1
̃︀𝒫(𝐸𝑡𝑖) → I of arbitrary

types 𝑡 = ⟨𝑡1, . . . , 𝑡𝑛⟩ and for all base sets 𝐸 ̸= ∅:

𝒰(𝐹 (𝑄)) = 𝑄, if 𝑡 ∈ {⟨⟩, ⟨1⟩}, (Correct generalization)
ℱ(𝑄) = ̃︀𝜋(𝑒), if 𝑄 = 𝜋(𝑒), (Projection quantifiers)

ℱ(𝑄̃︀�) = ℱ(𝑄)̃︀�, 𝑛 > 0 (Dualization)
ℱ(𝑄∪) = ℱ(𝑄)̃︀∪, 𝑛 > 0 (Internal joins)
if 𝑄 is decreasing in the 𝑛-th argument, (Preservation of monotonicity)
then ℱ(𝑄) is decreasing in the 𝑛-th argument, 𝑛 > 0
ℱ is compatible with functional application. (Functional application)

Because the development of useful models required considerable effort, Glöck-
ner searched for a method that allows to construct L-DFSes from ordinary
DFSes. Indeed it turned out that such a construction exists. The L-DFS con-
structed from a DFS ℱ is then denoted by (ℱ)𝐿. Interestingly, every L-DFS
can be constructed based on some DFS.

So far the axioms of L-DFSes are based on those of DFSes and are, therefore,
not generally suited to express branching quantification adequately. In order
to further restrict the set of plausible models Glöckner requires models to be
compatible with so-called quantifier nesting i.e. the representation of polyadic
quantifiers by a composition of simpler quantifiers.
Example 4 (Quantifier nestings [7]). Let ℱ be an L-DFS and consider a semi-
fuzzy L-quantifier of the form 𝑄′

𝑥𝑄′′
𝑦𝜙(𝑥, 𝑦). There are now two possibilities to

analyze this quantifier in order to produce its fuzzy counterpart via ℱ .
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First we might analyze the quantifier as a single type ⟨2⟩ semi-fuzzy L-
quantifier 𝑄′ ̃︀@ 𝑄′′ : 𝒫(𝐸2) → I defined by

(𝑄′ ̃︀@ 𝑄′′)(𝑆) = ℱ(𝑄′)(𝑍), for all 𝑆 ∈ 𝒫(𝐸2),

where 𝑍 ∈ ̃︀𝒫(𝐸) is characterized by 𝜇𝑍(𝑒) = 𝑄′′(𝑒𝑆) and 𝑒𝑆 = {𝑒′ ∈ 𝐸 :
(𝑒, 𝑒′) ∈ 𝑆}. We thus obtain the fuzzy L-quantifier ℱ(𝑄′ ̃︀@ 𝑄′′) : ̃︀𝒫(𝐸2) → I.

Alternatively we also could analyze the quantifier given above as a suc-
cession of quantifiers of type ⟨1⟩. Then we would obtain its fuzzy counter-
part by translating 𝑄′, 𝑄′′ to ℱ(𝑄′) and ℱ(𝑄′′) and composing these fuzzy
quantifiers following the same structure. This yields the fuzzy L-quantifier
(ℱ(𝑄′) @ ℱ(𝑄′′)) : ̃︀𝒫(𝐸2) → I given by

(ℱ(𝑄′) @ ℱ(𝑄′′))(𝑅) = ℱ(𝑄′)(𝑍), for all 𝑅 ∈ ̃︀𝒫(𝐸2),

where 𝑍 ∈ ̃︀𝒫(𝐸) is characterized by 𝜇𝑍(𝑒) = ℱ(𝑄′′)(𝑒𝑅) and 𝑒𝑅 ∈ ̃︀𝒫(𝐸) is
characterized by 𝜇𝑒𝑅(𝑒′) = 𝜇𝑅(𝑒, 𝑒′).

We have thus obtained two possibly different models of the same quantifier
by analyzing it in different ways. It therefore seems reasonable to require that
these two models coincide in plausible L-DFSes i.e. that

ℱ(𝑄′ ̃︀@ 𝑄′′) = ℱ(𝑄′) @ ℱ(𝑄′′).

This restriction however turned out to be very constraining or even to be
incompatible with the existing axioms. Glöckner points out that it would require
further research in order to identify the L-DFSes best suited to model branching
quantification.

5 Further Works
This section contains some useful advice for further study of the modeling of
fuzzy quantifiers and gives the reader some directions for further research topics.

First of all the interested reader might want to deepen his knowledge of
the state of the art in fuzzy quantifier modeling. To this end, the reader is
advised to consult the overview established by Delgado et al. [5]. This work
is a compilation of most of the approaches to fuzzy quantification. It contains
short descriptions of the approaches and their respective adequacy properties,
computational complexity, etc. Furthermore, the reader might be interested in
more details about the particularly sophisticated QFM approach conceived by
Glöckner. A detailed explanation about the DFS-Theory as well as elaborate
analyses of a number of approaches can be found in Glöckner’s book [7]. Besides
this Glöckner’s book also contains several discussions of the notions of vagueness
and quantification and represents, therefore, a good reading to broaden the
understanding of fuzzy quantification.

Throughout the overview we have seen several approaches that are all more
or less systematically analyzable for adequacy. The particular case of the QFM
approach provided by Glöckner is well understood from the perspective of its
linguistic adequacy. This is not only due to the generality of the proposed
approach, which allowed to consider whole classes of models at once, but also
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because it was provided with a framework that defines a set of adequacy con-
straints and concepts such as induced truth functions and extension principles.
The framework, therefore, provides a solid context in which Glöckner’s mod-
els are situated. Most, if not all, of the previous approaches lacked for such a
framework and were thus much harder to situate in the context of a fuzzy sys-
tem. It would, therefore, be reasonable to develop new methods within a similar
framework. This is in particular the case of the approaches based on represen-
tation levels which have so far not be the subject of rigorous and profound
analysis. Other interesting research topics are related to Glöckner’s framework,
which covers many aspects of quantification but which might be completed with
respect to branching quantification and the quantification over masses, which
would require a measure theoretic approach [7].

Conclusion
In this paper we gave an overview over the various approaches to the modeling
of fuzzy quantifiers. To this end, we presented the formal and linguistic notions
of vagueness, fuzziness, and quantification, which constitute the background
of fuzzy quantification. Furthermore, we distinguished between two main ap-
proaches to fuzzy quantification: the fuzzy linguistic quantifier approach and the
semi-fuzzy quantifier approach. Our examination of the simpler, but less general
fuzzy linguistic quantifier methods was carried out from a slightly more prac-
tical point of view by providing examples demonstrating their properties and
behavior. The more sophisticated semi-fuzzy quantifier methods were discussed
from a more theoretical perspective and we paid special attention to the DFS
theory developed by Glöckner. Finally, we gave a brief overview of the method
developed by Glöckner for the modeling of fuzzy polyadic quantification.

After the reading of this article the reader should be familiar with the no-
tions of vagueness, fuzziness and quantification. Moreover, the reader should
have a basic understanding of the techniques applied in the modeling of fuzzy
quantifiers, enabling him to find an easy access to the related literature.
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